Eras

Erasmus

Erasmus

What is VETcert?

- Project from 2016 2019
- Developing a pan-European certification scheme for managing veteran trees
- Aimed at both practising and consultant tree professionals.
- VETcert builds on the EU VETree project and this course is a key product
- 10 partners, 7 countries

2

Frasmus

Frasmus

1

3

Introduction to course

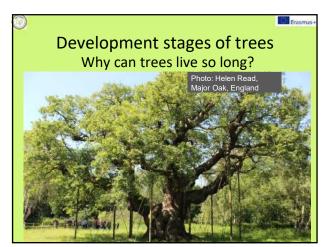
- This course builds on the VETree foundation course and is more advanced.
- Helps prepare you for VETcert certification

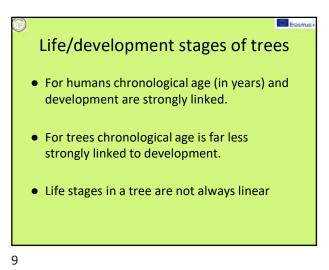
 does not cover everything!
 more self-study required.
- Does not cover practical cutting work
- It is a stand-alone course even if you do not want to attempt VETcert

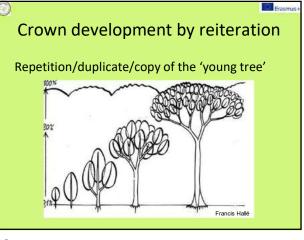
Introduction to course

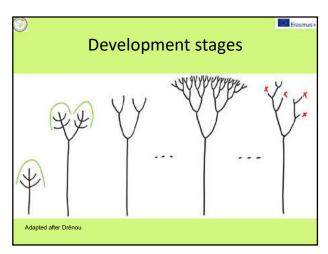
- Plan for the two days
- Comfort information
- Health and Safety
- Overnight
- accommodationTime keeping
- Questions?
- Course outline

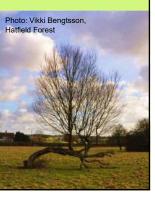
4

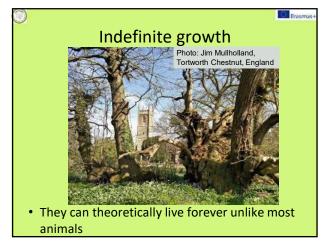

By the end of this course you will be able to:


- Understand how the management of veteran trees is influenced by their features and by factors that affect them:
 - (a) ageing and natural processes
 - (b) rooting environment
 - (c) hollowing and fungi
 - (d) location, species and situation


By the end of this course you will be able to (cont....)

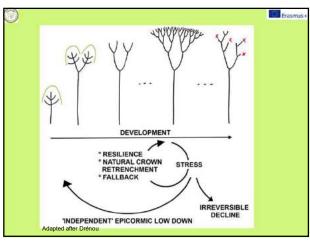

- Undertake a survey of a veteran tree and take into consideration all relevant factors to produce a management plan
- Understand what affects the sustainability of a population of veteran trees and how you can influence it

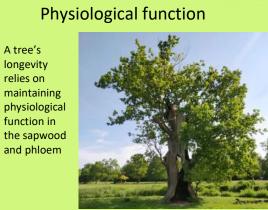



Erasmus

Frasmus

Indefinite growth and reiteration


- Can produce new shoots, roots, wood and bark throughout their lives
- There is no theoretical limit to a tree's capacity to produce new tissues



14

16

Photo: Ola Bengtsson Landeryd, Sweden

Retrenchment follows maturity

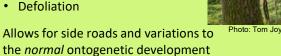
Combination of physiological & biomechanical processes

- Narrower sapwood increments
- Increased hydraulic resistance
- Smaller crown, less sugar, less root growth
- · Less capacity to absorb water
- Branches break more easily

C Erasn

19

Decline vs senescence

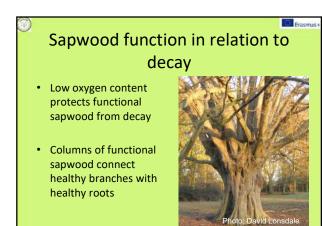

Decline = regression before the tree has reached its maximal development (expansion) and is independent of age or life stage

Senescence = last phase in an organism's development and is related to its 'ontogenetic' age (~ development stage). This can be limited to one or more independent functional units in a tree.

20

Frasmus

21


26

28

29

Maintenance of function

PASSIVE:

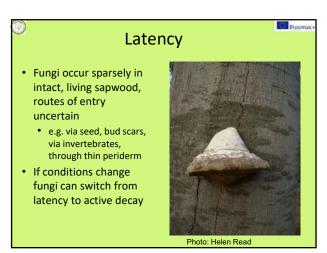
- High moisture-content in sapwood
- Durable heartwood in some species
- "Safety valves" between conducting cellsAnatomical boundaries between cell
- types (e.g. latewood, earlywood, rays)

ACTIVE

 Reaction zones in functional wood
 Barrier zone protects wood formed after the decay-initiating injury

Erasmus

Photo: Helen Read


Decay after wounding of sapwood

- Columns of sapwood become aerated and dysfunctional after wounding
- Dysfunctional sapwood can become rapidly decayed

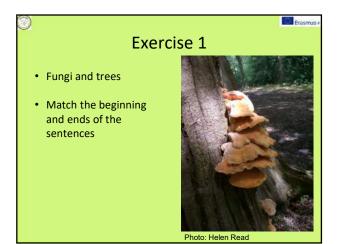
Photo: Tom Joye

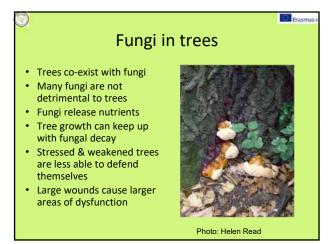
Era

34

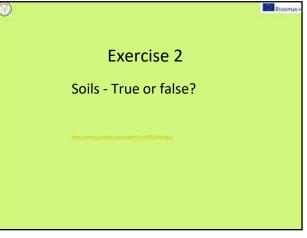
33

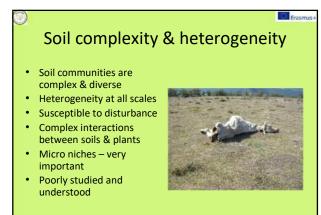
Problems of decay fungi for trees


- Extensive decay can weaken the tree
- Wounding leads to dysfunction and/or aeration, and hence decay – the bigger the wound, the more decay.
- Internal roots in decaying wood may prise apart weak structures



Erasmus-


36

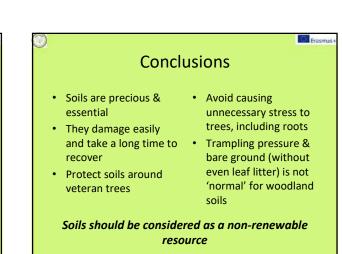

38

Video introducing mycorrhiza

Era:


Photo: Brian Cleckne

Complex interaction in soil between invertebrates, microbes and fungi


- Grazing of fungi & roots by invertebrates
- Fungi produce volatile compounds to deter grazing
- Roots produce exudates
- Lots we don't know about fungi / invertebrate / root relationships

45

47

Roots (& the rhizosphere)

Change physical structure of

Exude compounds which

are high quality nutrients

soil strength (the more the

for fungi. This then

increases numbers of microbes & their predators Tree roots in soil add to the

soil

Die & decay

better)

46

53

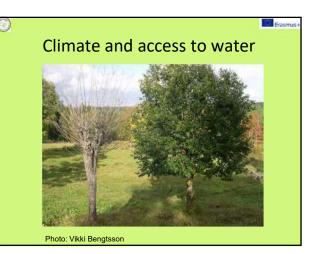
54

Frasm

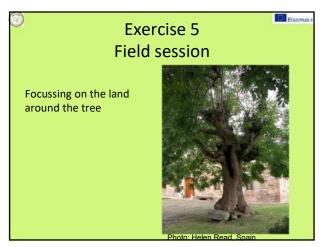
Soil amelioration

- Aim to improve below-ground ecosystem and help local cycling of minerals to be restored.
- This is not the same as creating the 'ideal' soil conditions! (fertilisers, soil liming, ...)
- Mulching must be seen as a 'kick start' for natural processes, not as the ultimate solution to soil problems
- Combine with measures to alleviate/avoid future degradation (compaction, ...)

Soil amelioration - mulching


- Mulch material:
 - organic material (leaves, wood, wood chip, compost, ...)
 - better to use organic material that is (partially) composted
- Application:
 - spread on surface vs. deeper application
 - spots/quadrants/wedges vs. complete surface
 - removal of vegetation prior to mulching?
 - planting of herb layer > think 'ecosystem'!
 - avoid volcano, think doughnut instead!

Frasmus



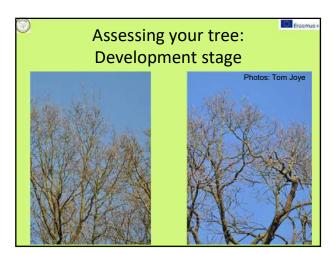
Era: Coffee & travel to the site Field exercise -TAKE WITH YOU: • Clip board • Pencil/pen • Binoculars • Forms to fill in •

65

66

64

67




Erasmus-Survival strategies: functional units • parts of the trunk differentiate into semiautonomous functional units. • each has its "own" crown, stem and roots one tree becomes two or three! layering another example Photo: Vikki Bengtsson

	Assessing your tree:
Indicators of health/vitality	Indicators of a positive response to pruning

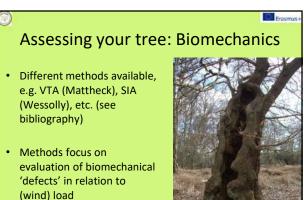
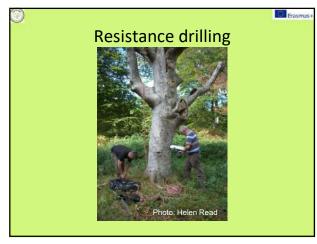
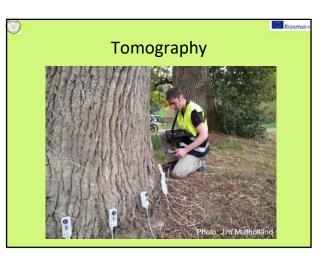


Photo: Helen Re

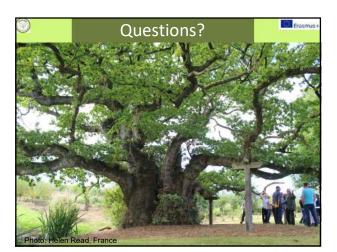
Biomechanics: why are veteran trees different?


- Methods mostly rely on statistics and assumptions based on relatively average and regular trees (e.g. a regular shape with hollowing)
- Veteran trees are often very complex biomechanical structures:
 - consisting of different functional and biomechanical units
 - often large stem, but small and low crown
 - hollowing, decay and complex adaptive growth
 - old large shell with new shoots and adventitious roots
 - lapsed pollards

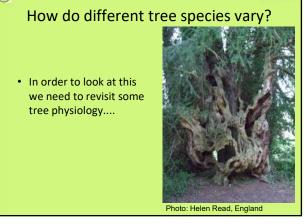
80

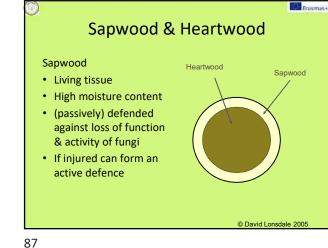

Using diagnostic tools to follow up on visual assessments

- Diagnostic tools can be used to complement visual assessments with measurable data
- Interpretation can be hard when used on biomechanically complex veteran trees
- Examples of diagnostic tools are: – resistance drilling equipment
 - sonic and electrical impedance tomography
 - pulling test
 - dynamic wind load analysis
 - etc.

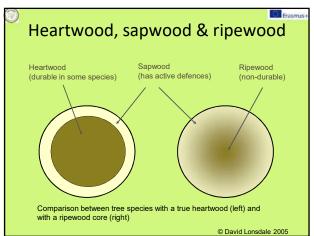

81

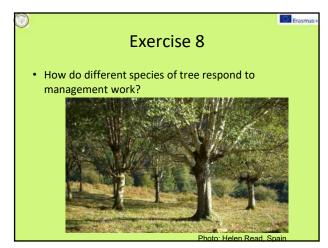
82


83


What did you learn yesterday?

- What made the biggest impression on you?
- What information was new or contrary to your previous knowledge?
- Any aspect that needs more explanation?




Frasmus Heartwood & Ripewood Ripewood Heartwood Older central wood of Dead central wood of tree species where species where living sapwood gradually ages sapwood has a finite and pre-determined without being converted to lifespan heartwood (e.g. Beech) **Durable heartwood** Heartwood containing protective substances (e.g. Oak)

88

Erasmu

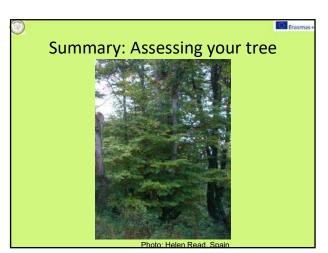
Dormant buds

 An axillary bud which doesn't develop into a shoot until after the second season following its formation. Buds may persist throughout the life of a tree, only developing if stimulated to do so

Adventitious shoots

Shoot formation

 Shoots that develop neither from terminal nor axillary buds


Epicormic shoots Shoots initiated on mature woody stems Can be from dormant buds or adventitious

Extreme dysfunction

- Pruning is a form of wounding
- If dysfunction becomes very severe, the whole tree may die

O Er

94

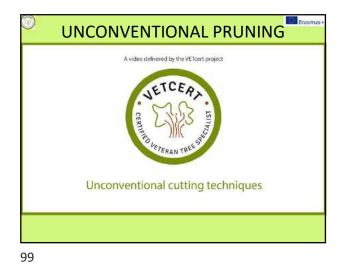
93

95

Unconventional pruning techniques		
Natural fracture / coronet cut	Cut and/or rip branch followed by some sculpting to give the appearance of a more natural torsional break	
Rip cut	Cut and let branch fall, tearing the bark	
Ring-bark reductions	Ring-bark branches instead of cutting off	
Leaving stubs	Cutting well beyond a branch union: not target pruning	

96

0		Eras	
	Natural fractures and rip cuts		
Ad	vantages	Disadvantages	
Мо	re natural appearance	May be considered untidy	
	y encourage more new wth	Unknown if this works; variable results	
	re woody tissue for ertebrates to colonise	Unproven, either for rare or potentially harmful invertebrates	
pro	y enhance or speed up duction of decay- ated habitats	May lead to weakening by excessive decay	
		Slower/ more expensive	
		More dangerous to do	


Ring-bark reductions and stubs

Ring bark reductions

- New growth stimulated from below the ring bark (in the few trees tested so far)
- Branch part beyond the ring bark dies slowly
- Branch breaks off giving a natural appearance
- Not evaluated

Stubs

• May encourage new shoots where there is a lack of an adequate pre-existing twig structure (in beech trees, less clear results with oak).

101

102

Erasmu

Managing heritage or urban veteran trees

- Veteran trees with high heritage values and/or in urban environments may have different management constraints
- Lots of factors may influence what work you can do on the tree.
- Greater intervention may be appropriate or desirable (e.g. propping, cabling etc.)

Erasn

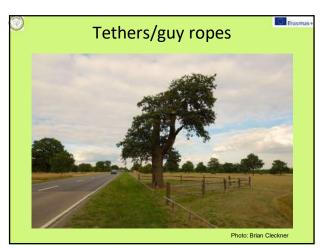
105

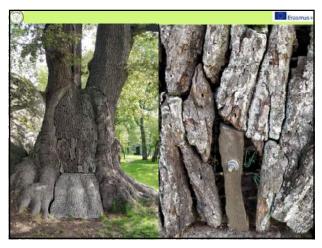
Propping, bracing and tethering

- All forms of artificial support for trees
- All systems have pros and cons (see fact sheet)
- Carefully consider the need and the system and material used. There is often no way back!

106

107


108



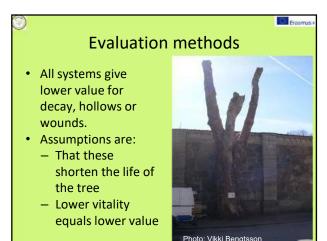
-

Control Contro

Photo: Vikki Bengtsson, Sweden

119

Economic evaluation of trees


Political agenda

- Legislative measures
- Replacement costs
- Many countries have produced methods
- Mainly for urban trees
- Larger trees = higher value

BUT

120

Erasn

Frasmus

Populations of veteran trees and the associated species

What affects the sustainability of a population of veteran trees?

What are the problems for the associated species?

How can this be influenced and managed?

Conservation - problems

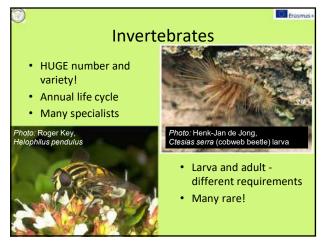
- Species cannot survive indefinitely in a single tree
- Large populations of old trees required
- Variety of niches required
- Tree population may have an age gap
- Extinction debt

124

Eras

Photo: Vikki Bengtsson Lucanus cervus Photo: Vikki Bengtsson

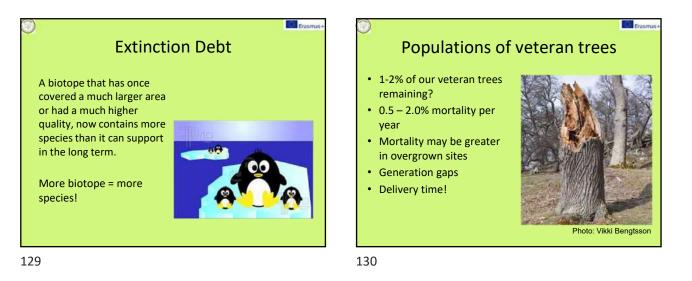
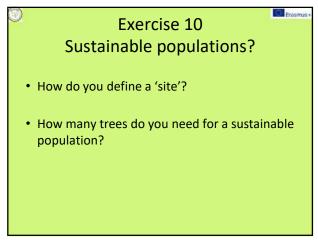
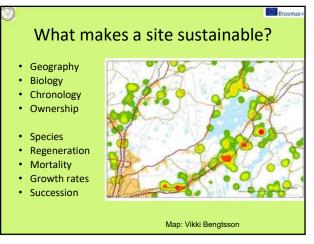
125

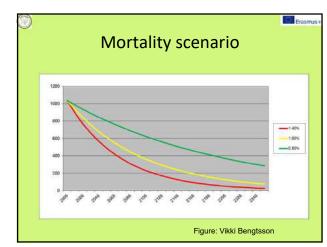

123

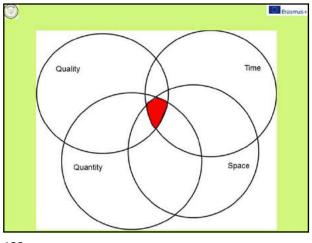
Rare & threatened species

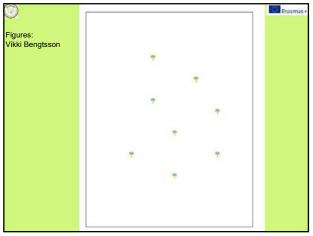
- 18% of European saproxylic beetles are threatened (IUCN, 2018)
- Most threatened species community in Europe

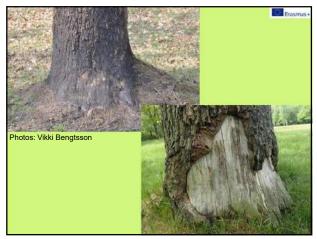
126


Photo: Vikki Bengtsson, Sweden



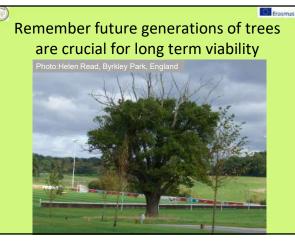




Where there are no 'future' veteran trees to close the generation gap it may be desirable to create some!

143

144


Monitoring is vital!

- Mark up the trees
- Take photos
- Dead/alive surveys
- Keep it simple
- What does success look like?
- Document what you have done and document what happens!
- Must be able to learn from the past

otos: Vikki Bengt

Erasmu

146

Veteran trees – conclusions Biodiversity Ageing process and natural processes very important

- Veteran trees need space
- Plan any management very carefully
- Plan for the future
 Protect for the future
- Protect for the future

O B

147

149

Veteran trees are challenging to work on

- Understanding of veteran trees is relatively poor
- Difficult to compare management techniques scientifically
- Difficult to give clear recommendations
- Requires more complex thought processes and open minds

148

VETcert assessment: Pre requisites

Practising level Arboricultural

Arboricultural qualification (or equlivalent) ETW or equivalent chainsaw & climbing/MEWP certificates 5 years experience

Consulting level

Relevant qualification 5 years experience (3 in consulting) Or equivalent experience and 10 years experience (5 in consulting/advising)

Frasmus

Frasmus

150

<image><image><image><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

VETcert assessment methods Practising level Multiple choice questions Written paper

Written paper Outdoor exercises and oral examination Outdoor exercises and oral examination Preparation of tree management plans

Both assessments take 1 day

152

